Linear Sketching and Applications to Distributed
Computation

Cameron Musco

November 7, 2014

Overview

Linear Sketches
» Johnson-Lindenstrauss Lemma

> Heavy-Hitters

Overview

Linear Sketches
» Johnson-Lindenstrauss Lemma
> Heavy-Hitters

Applications
» k-Means Clustering

» Spectral sparsification

Linear Sketching

0(polylog(n))

» Randomly choose 1 ~ D

=l|

= 0(n)

Linear Sketching

» Oblivious: I chosen independently of x.
» Composable: M(x+y) = Mx+ My.

Linear Sketching

» Oblivious: I chosen independently of x.
» Composable: M(x+y) = Mx+ My.

E E
N

n&E+y)

Linear Sketching

» Streaming algorithms with polylog(n) space.

» Frequency moments, heavy hitters, entropy estimation

Linear Sketching

» Streaming algorithms with polylog(n) space.

» Frequency moments, heavy hitters, entropy estimation

Linear Sketching

» Streaming algorithms with polylog(n) space.

» Frequency moments, heavy hitters, entropy estimation

1 1
-2 -1
0 0
R —
5 5
L 0 - L 0 -

Linear Sketching

» Streaming algorithms with polylog(n) space.

» Frequency moments, heavy hitters, entropy estimation

1 1 1
-2 -1 -1
0 0 0
— = —
5 5 5
| 0 | | 0 | | 6 |

Linear Sketching

» Streaming algorithms with polylog(n) space.

» Frequency moments, heavy hitters, entropy estimation

[1] 1] [1] [14
-2 -1 -1 -2
0 0 0 3
— — B B
5 5 5 0
| 0 | | 0 | | 6 | | 4]

Linear Sketching

» Streaming algorithms with polylog(n) space.

» Frequency moments, heavy hitters, entropy estimation

[1] 1] [1] [14
-2 -1 -1 -2
0 0 0 3
— — B B
5 5 5 0
| 0 | | 0 | | 6 | | 4]

Mxo — M(xp 4+ x1) — ... = M(x0 + X1 + ... + Xp)

Linear Sketching

Two Main Tools

» Johnson Lindenstrauss sketches (randomized dimensionality
reduction, subspace embedding, etc..)

» Heavy-Hitters sketches (sparse recovery, compressive sensing,
¢, sampling, graph sketching, etc....)

Johnson-Lindenstrauss Lemma

» Low Dimensional Embedding. n — m = O(log(1/8)/€?)

> [[Mx13 A (13-

Johnson-Lindenstrauss Lemma

» Low Dimensional Embedding. n — m = O(log(1/8)/€?)

> [[Mx13 A (13-

X1

N(0,1) .. N(0,1)] | * N0, 52 + ... + x2)

Bl

1
Jm

N(©.1) .. N(0,1) N2 + .. 4 x2)

Xn

Johnson-Lindenstrauss Lemma

» Low Dimensional Embedding. n — m = O(log(1/§)/€?)
> |13 A [1x]I3-

X1
N(0,1) ... N(0,1) X_2) N(0,||x|]§)
| T Um

3~

N@©,1) .. N(0,1) N, [x|2)

Xn

Johnson-Lindenstrauss Lemma

» Low Dimensional Embedding. n — m = O(log(1/§)/€?)
> |13 A [1x]I3-

o
R ENCR RV CRVR B [vEIxB)
VR0 L N0 VI v, 1x12)

1 m
|3 = — >N [1x]13)% ~e [IxI13
i=1

Johnson-Lindenstrauss Lemma

That’s it! - basic statistics
» Sparse constructions.
» +1 replace Gaussians

» Small sketch representation - i.e. small random seed
(otherwise storing N takes more space than storing x)

Heavy-Hitters

» Count sketch, sparse recovery, £, sampling, point query, graph
sketching, sparse fourier transform

» Simple idea: Hashing

5] 2
O ‘\\\\\ 7 /J'L.i

0 - V4 C2
| == Bl > [1/8] st

3 - \\\.

"_,/“ N
0| o
2 » Ci/e

Heavy-Hitters

» Random signs to deal with negative entries

» Repeat many times ‘decode’ heavy buckets

1 0
0 -1
1 0
0 -1

X1
X2

Xn

X1
X2

Xn

1

C1/e

G5

Cl/e

Heavy-Hitters

» Random signs to deal with negative entries

» Repeat many times ‘decode’ heavy buckets

Cs5 €20

C1/e C1/e Cl/e C1/e

> hy(2) =1, ho(2) = 5, h3(2) = 20, hs(2) = 1/e — 22, > 1

[[x[15

Heavy-Hitters

v

Just random encoding

v

polylog(n) to recover entires with ; () of the total norm

v

Basically best we could hope for.

v

Random scalings gives ¢, sampling.

Application 1: k-means Clustering

» Assign points to k clusters
> k is fixed

» Minimize distance to centroids: >.7 ; |laj — uc(,-)Hg

d dimensions

l_lﬁ

—

= N points

Application 1: k-means Clustering
Lloyd’s algorithm aka the ‘k-means algorithm’
> Initalize random clusters
» Compute centroids
> Assign each point to closest centroid
| 2

Repeat

Application 1: k-means Clustering
Lloyd’s algorithm aka the ‘k-means algorithm’
> Initalize random clusters
» Compute centroids
> Assign each point to closest centroid
» Repeat

Step 1 Step 7 Step 3

Step d Step 5 Step

Application 1: k-means Clustering

What if data is distributed?

@ @@

Application 1: k-means Clustering

> At each iteration each server sends out new local centroids
> Adding them together, gives the new global centroids.
» O(sdk) communication per iteration

~

Application 1: k-means Clustering

Can we do better?
» Balcan et al. 2013 - O((kd + sk)d)
» Locally computable O(kd + sk) sized coreset.
» All data is aggregated and k-means performed on single

Server.

Can we do even better?

Can we do even better?
» O((sd + sk)d) — O((sd" + sk)d") for d’ << d.

Can we do even better?
» O((sd + sk)d) — O((sd" + sk)d") for d’ << d.
» Liang et al. 2013, Balcan et al. 2014 - O((sk + sk)k + sdk)

Can we do even better?
» O((sd + sk)d) — O((sd" + sk)d") for d’ << d.
» Liang et al. 2013, Balcan et al. 2014 - O((sk + sk)k + sdk)

k/e

PCA,
A Ay/e

Can we do even better?
» O((sd + sk)d) — O((sd" + sk)d") for d’ << d.
» Liang et al. 2013, Balcan et al. 2014 - O((sk + sk)k + sdk)

k/e

PCA,

» CEMMP '14: improved O(k/¢?) to [k/e].

Application 1: k-means Clustering

Can we do better?

» O(sdk) inherent in communicating O(k) singular vectors of
dimension d to s servers.

» Apply Johnson-Lindenstrauss!

Application 1: k-means Clustering

Can we do better?
» O(sdk) inherent in communicating O(k) singular vectors of
dimension d to s servers.

» Apply Johnson-Lindenstrauss!
» Goal: Minimize distance to centroids: »." ; [la; — uc(,-)||%
N/
)
N.
A

[>9

> Equivalently all pairs distances: SO ﬁ >iec lai = a;||3

Application 1: k-means Clustering

logn /&2

——t—
——
A M & an

> [lai —ajl13 ~ lI(a; — a))N||3 = [la;M — a; M]3
» O(n?) distance vectors so set failure probability § =
» M needs O(log1/§/€%) = O(log n/e?) dimensions

_1
100%n? *

Application 1: k-means Clustering

Immediately distributes - just need to share randomness
specifying IN.

Application 1: k-means Clustering

Our Paper [Cohen Elder Musco Musco Persu 14]
» Show that M only needs to have O(k/€?) columns
> Almost completely removes dependence on input size!
» O(k3 + sk? + log d) - log d gets swallowed in the word size.

Application 1: k-means Clustering

Highest Level Idea for how this works

» Show that the cost of projecting the columns Al to any
k-dimensional subspace approximates the cost of projecting A
to that subspace.

> Note that k-means can actually be viewed as a column
projection problem.

» k-means clustering is ‘constrained’ PCA

> Lots of applications aside from k-means clustering.

Application 1: k-means Clustering

Open Questions
> (9 + ¢€)-approximation with only O(log k) dimensions! What is
the right answer?
» We use O(kd + sk) sized coresets blackbox and reduce d.

Can we use our linear algebraic understanding to improve
coreset constructions? | feels like we should be able to.

> These algorithms should be practical. | think testing them out
would be useful - for both k-means and PCA.

» Other problems (spectral clustering, SVM, what do people
actually do?)

Application 2: Spectral Sparsification

General Idea
» Approximate a dense graph with a much sparser graph.

» Reduce O(n?) edges — O(nlog n) edges

Application 2: Spectral Sparsification

General Idea
» Approximate a dense graph with a much sparser graph.

» Reduce O(n?) edges — O(nlog n) edges

Application 2: Spectral Sparsification

Cut Sparsification (Benczir, Karger '96)

» Preserve every cut value to within (1 + ¢) factor

Applications: Minimum cut, sparsest cut, etc.

Application 2: Spectral Sparsification

Cut Sparsification (Benczir, Karger '96)

» Preserve every cut value to within (1 + ¢) factor

Applications: Minimum cut, sparsest cut, etc.

Application 2: Spectral Sparsification

Cut Sparsification (Benczir, Karger '96)

» Preserve every cut value to within (1 + ¢) factor

Ci
[]
\ -

Applications: Minimum cut, sparsest cut, etc.

Application 2: Spectral Sparsification

Cut Sparsification (Benczir, Karger '96)

» Preserve every cut value to within (1 + ¢) factor

{ N, v

Applications: Minimum cut, sparsest cut, etc.

Application 2: Spectral Sparsification

Cut Sparsification (Benczir, Karger '96)

» Preserve every cut value to within (1 + ¢) factor

\) “\

Applications: Minimum cut, sparsest cut, etc.

(1+¢)Cy

Application 2: Spectral Sparsification

Cut Sparsification (Benczir, Karger '96)

» Preserve every cut value to within (1 + ¢) factor

. G \ v 1+¢C

Applications: Minimum cut, sparsest cut, etc.

Application 2: Spectral Sparsification

Cut Sparsification (Benczir, Karger '96)

» Preserve every cut value to within (1 + ¢) factor

. G \ v 1+¢C

Applications: Minimum cut, sparsest cut, etc.

Application 2: Spectral Sparsification

Cut Sparsification (Benczir, Karger '96)

» Preserve every cut value to within (1 + ¢) factor

. G \ v 1+¢C

Applications: Minimum cut, sparsest cut, etc.

Application 2: Spectral Sparsification

Cut Sparsification (Benczir, Karger '96)

» Preserve every cut value to within (1 + ¢) factor

C2
o /

Applications: Minimum cut

(1+€)C
. RV
—__/

, Ssparsest cut, etc.

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
» Let B € R()*" be the vertex-edge incidence matrix for a
graph G.
» Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[L] €12 1 -1 0 0
e;3 (1 0 -1 O
es (O 0O 0 O
.4_ €23 0 1 -1 0
e eq |0 1 0 -1
3 e+ [0 0 0 0]

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)

» Let B € R()*" be the vertex-edge incidence matrix for a

graph G.

» Let x € {0,1}" be an “indicator vector” for some cut.

2
1.. L €12
€13
€14
e, €3
3. €24

€34

Vi

O O O O

V2

O =k OO

V3

-1
0
-1
0
0

Va

olLooo

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)

» Let B € R()*" be the vertex-edge incidence matrix for a
graph G.

» Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
® L] €12 1 -1 0 0
€13
es (O 0 0 O
e, e3 [0 1 -1 0
e esq |0 1 0 -1
3 s [0 0 0 0]

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
» Let B € R()*" be the vertex-edge incidence matrix for a
graph G.
» Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[L] €12 1 -1 0 0
e;3 (1 0 -1 O
€14
.4_ €23 0 1 -1 0
e eq |0 1 0 -1
3 e+ [0 0 0 0]

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)

» Let B € R()*" be the vertex-edge incidence matrix for a
graph G.

» Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[2 L] €12 1 -1 0 0
€13 1 0 -1 0
ea (O 0 0 O
®, e
e esq |0 1 0 -1
3 s [0 0 0 0]

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
» Let B € R()*" be the vertex-edge incidence matrix for a
graph G.
» Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[2 ’ €12 1 -1 0 0
€13 1 0 -1 0
es (O 0 0 O
e, e3 [0 1 -1 0
3. €24
es [0 0 0 0]

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
» Let B € R()*" be the vertex-edge incidence matrix for a
graph G.
» Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[L] €12 1 -1 0 0
e;3 (1 0 -1 O
es (O 0O 0 O
.4_ €23 0 1 -1 0
e eq |0 1 0 -1
3 e+ [0 0 0 0]

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
» Let B € R()*" be the vertex-edge incidence matrix for a
graph G.
» Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[L] €12 1 -1 0 0 1
e;3 (1 0 -1 O 1
es (O 0O 0 O 0
.4_ e3 |0 1 -1 0]X 0
e eq |0 1 0 -1
3 e [0 0 0 o] %

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
» Let B € R()*" be the vertex-edge incidence matrix for a
graph G.
» Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[L] €12 1 -1 0 0 1
e;3 (1 0 -1 O 1
es (O 0O 0 O 0
.4_ e3 |0 1 -1 0]X 0 =
e eq |0 1 0 -1
3 e [0 0 0 o] %

O = M= O = O

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
» Let B € R()*" be the vertex-edge incidence matrix for a
graph G.
» Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
L] €12 1 -1 0 0 1
T) \ e;3 (1 0 -1 O 1
es (O 0O 0 O 0
l .4_ e3 |0 1 -1 0]X 0 =
€24 0 1 0 -1
3 e [0 0 0 o] %

O =M= O = O

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
» Let B € R()*" be the vertex-edge incidence matrix for a
graph G.
» Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[/ €12 1 -1 0 0 1
\ e;3 (1 0 -1 O 1
. es (O 0O 0 O 0
/ .4_ e3 |0 1 -1 0]X 0 =
€24 0 1 0 -1
3 e [0 0 0 o] %

O = = O = O

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
» Let B € R()*" be the vertex-edge incidence matrix for a
graph G.
» Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[] \ €12 1 -1 0 0 1
) ez |1 0 -1 O 1
: \. es [0 0 0 O 0
4 e3 |0 1 -1 0]X 0 =
@ eq |0 1 0 -1
3 e [0 0 0 o] %

O =M= O = O

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
» Let B € R()*" be the vertex-edge incidence matrix for a
graph G.
» Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[L] €12 1 -1 0 0 1
e;3 [1 0 -1 O 1
es (O 0 0 O 0
.4_ e3 |0 1 -1 0]X 0 =
e eq |0 1 0 -1
3 s [0 0 0 o] %

O =M= O = O

Graph Sparsification

Cut Sparsification (Benczir, Karger '96) So, ||Bx||3 = cut value.

Goal _
Find some B such that, for all x € {0,1}",

(1—e)lIBx|3 < [I1Bx||3 < (1+¢)|Bx|3

Graph Sparsification

Cut Sparsification (Benczir, Karger '96) So, ||Bx||3 = cut value.

Goal _
Find some B such that, for all x € {0,1}",

(1—e)lIBx|3 < [I1Bx||3 < (1+¢)|Bx|3

» x' BTBx ~ x' BT Bx.

» L =B'B is the graph Laplacian.

Graph Sparsification

Spectral Sparsification (Spielman, Teng '04)

Goal
Find some B such that, for all x € 872 R”,

(1—e)lIBx|z < [[Bx|I3 < (1 +¢)||Bx|3

Graph Sparsification

Spectral Sparsification (Spielman, Teng '04)

Goal
Find some B such that, for all x € 872 R”,

(1—e)lIBx|z < [[Bx|I3 < (1 +¢)||Bx|3

Applications: Anything cut sparsifiers can do, Laplacian system
solves, computing effective resistances, spectral clustering,
calculating random walk properties, etc.

Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):
e
.

Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):
e
.

Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):
e
.

Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):
e
.

Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):
|]
.

Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):
e
.

Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):
|]
.

Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):
e
.

Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):
e
.

Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

» Connectivity for cut sparsifiers [Benczdr, Karger '96], [Fung,
Hariharan, Harvey, Panigrahi '11].

Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

» Connectivity for cut sparsifiers [Benczdr, Karger '96], [Fung,
Hariharan, Harvey, Panigrahi '11].

» Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava '08].

Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

» Connectivity for cut sparsifiers [Benczdr, Karger '96], [Fung,
Hariharan, Harvey, Panigrahi '11].

» Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava '08].

Actually oversample: by
Gives sparsifiers with O(nlog n) edges — reducing from O(2).

Application 2: Spectral Sparsification

Highest Level Idea Of Our Approach

_— () —

>
O(logt n) { IIB

Application 2: Spectral Sparsification

Why?
» Semi-streaming model with insertions and deletions
> Near optimal oblivious graph compression
» Distributed Graph Computations

Application 2: Spectral Sparsification

Distributed Graph Computation
» Trinity, Pregel, Giraph

Application 2: Spectral Sparsification
Distributed Graph Computation
» Trinity, Pregel, Giraph

n vertices

f_"%

0O(n2) edges - B @

Application 2: Spectral Sparsification

Distributed Graph Computation
> Trinity, Pregel, Giraph

X 5

a N2 1

Application 2: Spectral Sparsification
Distributed Graph Computation
» Trinity, Pregel, Giraph

Application 2: Spectral Sparsification
» Naive to share my data: O(|Vi|n)
» With sketching: O(|V;|log® n)

Vil
)

|

O(logt n) { I1B;

Application 2: Spectral Sparsification
Alternatives to Sketching?

» Simulate message passing algorithms over the nodes - this is
what'’s done in practice.

Application 2: Spectral Sparsification

Alternatives to Sketching?
» Koutis "14 gives distributed algorithm for spectral
sparsification
> lteratively computes O(log n) spanners (alternatively, low
stretch trees) to upper bound effective resistances and sample
edges.

» Combinatorial and local

Application 2: Spectral Sparsification

» Cost per spanner: O(log? n) rounds, O(mlog n) messages,
O(log n) message size.

» If simulating, each server sends O(d(V;) log n) per round.

> O(d(V;)log n) beats our bound of O(|V;|log n) iff
o(Vi) < Vil

» But in that case, just keep all your outgoing edges and
sparsify locally! At worst adds n edges to the final sparsifier.

Application 2: Spectral Sparsification

Moral of That Story?
> |I'm not sure.
» Sparsifiers are very strong. Could we do better for other
problems?
» Can we reduce communication of simulated distributed
protocols using sparsifiers?

» What other things can sketches be applied to? Biggest open
question is distances - spanners, etc.

Sketching a Sparsifier

We are still going to sample by effective resistance.

» Treat graph as resistor network, each edge has resistance 1.

Sketching a Sparsifier

We are still going to sample by effective resistance.
» Treat graph as resistor network, each edge has resistance 1.

iy 4

L Sl
.

hd

Fna >
- S WV #

2 L . .

L

[

Sketching a Sparsifier

We are still going to sample by effective resistance.
» Treat graph as resistor network, each edge has resistance 1.

» Flow 1 unit of current from node i to j and measure voltage
drop between the nodes.

Sketching a Sparsifier

Using standard V' = IR equations:

F
X
@0y 0 <
I
B O S0

Sketching a Sparsifier

Using standard V' = IR equations:

F
X
@0y 0 <
I
B O S0

L—l

B oA S0

@Iy ®+—0O <

Sketching a Sparsifier

Using standard V' = IR equations:

v C C

i) u u

T T

X|i| = 1|: -1 |x

L 0 L z

g n n

e t t
1
0

If xe = | 0|, e's effective resistance is Te = x] L™ 1x,.

-1

0

@Iy ®+—0O <

Sketching a Sparsifier

Effective resistance of edge e is 7o = x;rL_lxe.

Sketching a Sparsifier

Effective resistance of edge e is 7o = x;rL_lxe.

Alternatively, Te is the et" entry in the vector:

Sketching a Sparsifier

Effective resistance of edge e is 7o = x;rL_lxe.

Alternatively, Te is the et" entry in the vector:

AND

=x L', =x/(L71)TB"BL !x,

Sketching a Sparsifier

We just need two more ingredients: BL !x.

Sketching a Sparsifier

We just need two more ingredients:

/> Heavy Hitters [GLPS10]:
» Sketch vector poly(n) vector in polylog(n) space.

» Extract any element who's square is a O(1/ log n) fraction of
the vector’s squared norm.

Sketching a Sparsifier

We just need two more ingredients:

/> Heavy Hitters [GLPS10]:
» Sketch vector poly(n) vector in polylog(n) space.

» Extract any element who's square is a O(1/ log n) fraction of
the vector’s squared norm.

Coarse Sparsifier:
» L such that x"Lx = (1 + constant)x " Lx

Sketching a Sparsifier

Putting it all together:
1. Sketch (Mpeavy hitters)B in nlog® n space.

BL 1x,

Sketching a Sparsifier

Putting it all together:
1. Sketch (Mpeavy hitters)B in nlog® n space.
2. CompUte (nheavy hitters)Bi:il-

Sketching a Sparsifier

Putting it all together:
1. Sketch (Mpeavy hitters)B in nlog® n space.
2. CompUte (nheavy hitters)Bi:il-

3. For every possible edge e, compute (Mheayy hitters)BLflxe

Sketching a Sparsifier

Putting it all together:
1. Sketch (Mpeavy hitters)B in nlog® n space.
2. CompUte (nheavy hitters)Bi:il-
3. For every possible edge e, compute (Mheayy hitters)BI:

BL 1x.(e)? Lg

~
~

= =T
IBL-1x[3 e °

So, as long as 7 > O(1/ log n), we will recover the edge!

71Xe

Sketching a Sparsifier

Putting it all together:
1. Sketch (Mpeavy hitters)B in nlog® n space.
2. CompUte (nheavy hitters)Bi:il-
3. For every possible edge e, compute (Mheayy hitters)Br_*lxe

4. Extract heavy hitters from the vector, check if et" entry is one.

BL 1x.(e)? N Lg

~ ~ = T,
IBL-x[3 e °

So, as long as 7 > O(1/ log n), we will recover the edge!

Sketching a Sparsifier

How about edges with lower effective resistance? Sketch:

Sketching a Sparsifier

How about edges with lower effective resistance? Sketch:

Sketching a Sparsifier

How about edges with lower effective resistance? Sketch:

B B;

BL 1x.

Sketching a Sparsifier

How about edges with lower effective resistance? Sketch:

BL 1x.

Sketching a Sparsifier

How about edges with lower effective resistance? Sketch:

%

B By, Bis Bys

[T

BL 1x.

Sketching a Sparsifier

How about edges with lower effective resistance?

Sketching a Sparsifier

How about edges with lower effective resistance?

» First level: 7o > 1/log n with probability 1.

Sketching a Sparsifier

How about edges with lower effective resistance?
» First level: 7o > 1/log n with probability 1.
» Second level: 7. > 1/2log n with probability 1/2.

Sketching a Sparsifier

How about edges with lower effective resistance?
» First level: 7o > 1/log n with probability 1.
» Second level: 7. > 1/2log n with probability 1/2.
» Third level: 7. > 1/4log n with probability 1/4.

Sketching a Sparsifier

How about edges with lower effective resistance?
» First level: 7o > 1/log n with probability 1.
» Second level: 7. > 1/2log n with probability 1/2.
» Third level: 7. > 1/4log n with probability 1/4.
» Forth level: 7. > 1/8log n with probability 1/8.

Sketching a Sparsifier

How about edges with lower effective resistance?
» First level: 7o > 1/log n with probability 1.
» Second level: 7. > 1/2log n with probability 1/2.
» Third level: 7. > 1/4log n with probability 1/4.
» Forth level: 7. > 1/8log n with probability 1/8.

> ...

Sketching a Sparsifier

How about edges with lower effective resistance?

» First level: 7o > 1/log n with probability 1.

v

Second level: 7o > 1/2log n with probability 1/2.
Third level: 7o > 1/4log n with probability 1/4.
Forth level: 7. > 1/8log n with probability 1/8.

v

v

> ...

So, we can sample every edge by

Sparsifer Chain

Final Piece [Li, Miller, Peng '12]

» We needed a constant error spectral sparsifier to get our
(1 £ €) sparsifier.

Sparsifer Chain

Final Piece [Li, Miller, Peng '12]

» We needed a constant error spectral sparsifier to get our
(1 £ €) sparsifier.

e ° .
=1/2 \
L)

. .
G

Sparsifer Chain

Final Piece [Li, Miller, Peng '12]

» We needed a constant error spectral sparsifier to get our
(1 £ €) sparsifier.

Sparsifer Chain

Final Piece [Li, Miller, Peng '12]

» We needed a constant error spectral sparsifier to get our
(1 £ €) sparsifier.

e .)
o ®1/2 \ ®1/2 ®1/2
e
[] [3

G

Sparsifer Chain

Final Piece [Li, Miller, Peng '12]

» We needed a constant error spectral sparsifier to get our
(1 £ €) sparsifier.

o . .
‘ *1/2 \\ ~1/2 ~1/2 F172
.
. ¢
G

