Linear Sketching and Applications to Distributed
Computation

Cameron Musco

November 7, 2014



Overview

Linear Sketches
» Johnson-Lindenstrauss Lemma

> Heavy-Hitters



Overview

Linear Sketches
» Johnson-Lindenstrauss Lemma
> Heavy-Hitters

Applications
» k-Means Clustering

» Spectral sparsification
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Linear Sketching

» Streaming algorithms with polylog(n) space.

» Frequency moments, heavy hitters, entropy estimation
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Mxo — M(xp 4+ x1) — ... = M(x0 + X1 + ... + Xp)



Linear Sketching

Two Main Tools

» Johnson Lindenstrauss sketches (randomized dimensionality
reduction, subspace embedding, etc..)

» Heavy-Hitters sketches (sparse recovery, compressive sensing,
¢, sampling, graph sketching, etc....)




Johnson-Lindenstrauss Lemma

» Low Dimensional Embedding. n — m = O(log(1/8)/€?)

> [[Mx13 A (13-



Johnson-Lindenstrauss Lemma

» Low Dimensional Embedding. n — m = O(log(1/8)/€?)

> [[Mx13 A (13-

X1

N(0,1) .. N(0,1)] | * N0, 52 + ... + x2)

Bl

1
Jm

N(©.1) .. N(0,1) N2 + .. 4 x2)

Xn



Johnson-Lindenstrauss Lemma

» Low Dimensional Embedding. n — m = O(log(1/§)/€?)
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Johnson-Lindenstrauss Lemma

» Low Dimensional Embedding. n — m = O(log(1/§)/€?)
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Johnson-Lindenstrauss Lemma

That’s it! - basic statistics
» Sparse constructions.
» +1 replace Gaussians

» Small sketch representation - i.e. small random seed
(otherwise storing N takes more space than storing x)



Heavy-Hitters

» Count sketch, sparse recovery, £, sampling, point query, graph
sketching, sparse fourier transform

» Simple idea: Hashing
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Heavy-Hitters

» Random signs to deal with negative entries

» Repeat many times ‘decode’ heavy buckets
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Heavy-Hitters

» Random signs to deal with negative entries

» Repeat many times ‘decode’ heavy buckets

Cs5 €20

C1/e C1/e Cl/e C1/e

> hy(2) =1, ho(2) = 5, h3(2) = 20, hs(2) = 1/e — 22, > 1
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Heavy-Hitters

v

Just random encoding

v

polylog(n) to recover entires with ; ( ) of the total norm

v

Basically best we could hope for.

v

Random scalings gives ¢, sampling.



Application 1: k-means Clustering

» Assign points to k clusters
> k is fixed

» Minimize distance to centroids: >.7 ; |laj — uc(,-)Hg

d dimensions
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Lloyd’s algorithm aka the ‘k-means algorithm’
> Initalize random clusters
» Compute centroids
> Assign each point to closest centroid
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Application 1: k-means Clustering
Lloyd’s algorithm aka the ‘k-means algorithm’
> Initalize random clusters
» Compute centroids
> Assign each point to closest centroid
» Repeat

Step 1 Step 7 Step 3

Step d Step 5 Step




Application 1: k-means Clustering

What if data is distributed?
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Application 1: k-means Clustering

> At each iteration each server sends out new local centroids
> Adding them together, gives the new global centroids.
» O(sdk) communication per iteration
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Application 1: k-means Clustering

Can we do better?
» Balcan et al. 2013 - O((kd + sk)d)
» Locally computable O(kd + sk) sized coreset.
» All data is aggregated and k-means performed on single

Server.
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Can we do even better?
» O((sd + sk)d) — O((sd" + sk)d") for d’ << d.
» Liang et al. 2013, Balcan et al. 2014 - O((sk + sk)k + sdk)

k/e

PCA,

» CEMMP '14: improved O(k/¢?) to [k/e].
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Application 1: k-means Clustering

Can we do better?
» O(sdk) inherent in communicating O(k) singular vectors of
dimension d to s servers.

» Apply Johnson-Lindenstrauss!
» Goal: Minimize distance to centroids: »." ; [la; — uc(,-)||%
N/
)
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A
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> Equivalently all pairs distances: SO ﬁ >iec lai = a;||3



Application 1: k-means Clustering
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» O(n?) distance vectors so set failure probability § =
» M needs O(log1/§/€%) = O(log n/e?) dimensions
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Application 1: k-means Clustering

Immediately distributes - just need to share randomness
specifying IN.




Application 1: k-means Clustering

Our Paper [Cohen Elder Musco Musco Persu 14]
» Show that M only needs to have O(k/€?) columns
> Almost completely removes dependence on input size!
» O(k3 + sk? + log d) - log d gets swallowed in the word size.



Application 1: k-means Clustering

Highest Level Idea for how this works

» Show that the cost of projecting the columns Al to any
k-dimensional subspace approximates the cost of projecting A
to that subspace.

> Note that k-means can actually be viewed as a column
projection problem.

» k-means clustering is ‘constrained’ PCA

> Lots of applications aside from k-means clustering.



Application 1: k-means Clustering

Open Questions
> (9 + ¢€)-approximation with only O(log k) dimensions! What is
the right answer?
» We use O(kd + sk) sized coresets blackbox and reduce d.

Can we use our linear algebraic understanding to improve
coreset constructions? | feels like we should be able to.

> These algorithms should be practical. | think testing them out
would be useful - for both k-means and PCA.

» Other problems (spectral clustering, SVM, what do people
actually do?)
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Application 2: Spectral Sparsification

Cut Sparsification (Benczir, Karger '96)

» Preserve every cut value to within (1 + ¢) factor
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Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
» Let B € R()*" be the vertex-edge incidence matrix for a
graph G.
» Let x € {0,1}" be an “indicator vector” for some cut.
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Graph Sparsification

Cut Sparsification (Benczir, Karger '96)

» Let B € R()*" be the vertex-edge incidence matrix for a

graph G.

» Let x € {0,1}" be an “indicator vector” for some cut.
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Graph Sparsification

Cut Sparsification (Benczir, Karger '96) So, ||Bx||3 = cut value.

Goal _
Find some B such that, for all x € {0,1}",

(1—e)lIBx|3 < [I1Bx||3 < (1+¢)|Bx|3

» x' BTBx ~ x' BT Bx.

» L =B'B is the graph Laplacian.



Graph Sparsification

Spectral Sparsification (Spielman, Teng '04)

Goal
Find some B such that, for all x € 872 R”,
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Graph Sparsification

Spectral Sparsification (Spielman, Teng '04)

Goal
Find some B such that, for all x € 872 R”,

(1—e)lIBx|z < [[Bx|I3 < (1 +¢)||Bx|3

Applications: Anything cut sparsifiers can do, Laplacian system
solves, computing effective resistances, spectral clustering,
calculating random walk properties, etc.
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Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

» Connectivity for cut sparsifiers [Benczdr, Karger '96], [Fung,
Hariharan, Harvey, Panigrahi '11].

» Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava '08].

Actually oversample: by
Gives sparsifiers with O(nlog n) edges — reducing from O( 2).



Application 2: Spectral Sparsification

Highest Level Idea Of Our Approach
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Application 2: Spectral Sparsification

Why?
» Semi-streaming model with insertions and deletions
> Near optimal oblivious graph compression
» Distributed Graph Computations
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Distributed Graph Computation
» Trinity, Pregel, Giraph
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Distributed Graph Computation
» Trinity, Pregel, Giraph
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Distributed Graph Computation
> Trinity, Pregel, Giraph
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Application 2: Spectral Sparsification
Distributed Graph Computation
» Trinity, Pregel, Giraph




Application 2: Spectral Sparsification
» Naive to share my data: O(|Vi|n)
» With sketching: O(|V;|log® n)

Vil
)

|
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Application 2: Spectral Sparsification
Alternatives to Sketching?

» Simulate message passing algorithms over the nodes - this is
what'’s done in practice.




Application 2: Spectral Sparsification

Alternatives to Sketching?
» Koutis "14 gives distributed algorithm for spectral
sparsification
> lteratively computes O(log n) spanners (alternatively, low
stretch trees) to upper bound effective resistances and sample
edges.

» Combinatorial and local



Application 2: Spectral Sparsification

» Cost per spanner: O(log? n) rounds, O(mlog n) messages,
O(log n) message size.

» If simulating, each server sends O(d(V;) log n) per round.

> O(d(V;)log n) beats our bound of O(|V;|log n) iff
o(Vi) < Vil

» But in that case, just keep all your outgoing edges and
sparsify locally! At worst adds n edges to the final sparsifier.



Application 2: Spectral Sparsification

Moral of That Story?
> |I'm not sure.
» Sparsifiers are very strong. Could we do better for other
problems?
» Can we reduce communication of simulated distributed
protocols using sparsifiers?

» What other things can sketches be applied to? Biggest open
question is distances - spanners, etc.
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We are still going to sample by effective resistance.

» Treat graph as resistor network, each edge has resistance 1.



Sketching a Sparsifier

We are still going to sample by effective resistance.
» Treat graph as resistor network, each edge has resistance 1.

iy 4

L Sl
.

hd

Fna >
- S WV #

2 L . .

L

[



Sketching a Sparsifier

We are still going to sample by effective resistance.
» Treat graph as resistor network, each edge has resistance 1.

» Flow 1 unit of current from node i to j and measure voltage
drop between the nodes.
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Sketching a Sparsifier

Using standard V' = IR equations:

v C C
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If xe = | 0|, e's effective resistance is Te = x] L™ 1x,.

-1

0

@Iy ®+—0O <



Sketching a Sparsifier

Effective resistance of edge e is 7o = x;rL_lxe.
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Effective resistance of edge e is 7o = x;rL_lxe.

Alternatively, Te is the et" entry in the vector:

AND

=x L', =x/(L71)TB"BL !x,
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» Extract any element who's square is a O(1/ log n) fraction of
the vector’s squared norm.



Sketching a Sparsifier

We just need two more ingredients:

/> Heavy Hitters [GLPS10]:
» Sketch vector poly(n) vector in polylog(n) space.

» Extract any element who's square is a O(1/ log n) fraction of
the vector’s squared norm.

Coarse Sparsifier:
» L such that x"Lx = (1 + constant)x " Lx



Sketching a Sparsifier

Putting it all together:
1. Sketch (Mpeavy hitters)B in nlog® n space.

BL 1x,



Sketching a Sparsifier

Putting it all together:
1. Sketch (Mpeavy hitters)B in nlog® n space.
2. CompUte (nheavy hitters)Bi:il-



Sketching a Sparsifier

Putting it all together:
1. Sketch (Mpeavy hitters)B in nlog® n space.
2. CompUte (nheavy hitters)Bi:il-

3. For every possible edge e, compute (Mheayy hitters)BLflxe



Sketching a Sparsifier

Putting it all together:
1. Sketch (Mpeavy hitters)B in nlog® n space.
2. CompUte (nheavy hitters)Bi:il-
3. For every possible edge e, compute (Mheayy hitters)BI:
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Sketching a Sparsifier

Putting it all together:
1. Sketch (Mpeavy hitters)B in nlog® n space.
2. CompUte (nheavy hitters)Bi:il-
3. For every possible edge e, compute (Mheayy hitters)Br_*lxe

4. Extract heavy hitters from the vector, check if et" entry is one.

BL 1x.(e)? N Lg

~ ~ = T,
IBL-x[3 e °

So, as long as 7 > O(1/ log n), we will recover the edge!
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Sketching a Sparsifier

How about edges with lower effective resistance? Sketch:
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How about edges with lower effective resistance?

» First level: 7o > 1/log n with probability 1.

v

Second level: 7o > 1/2log n with probability 1/2.
Third level: 7o > 1/4log n with probability 1/4.
Forth level: 7. > 1/8log n with probability 1/8.

v

v

> ...

So, we can sample every edge by
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