Big-O Cheat Sheet

Cameron Musco

$O(x)$ - less than

- Big O
- " $5 n$ is $O(n)$ and $O\left(n^{2}\right)$." "Our algorithm runs in..."
- $f<c * g$ for large enough n

$\Omega(x)$ - greater than

- Big Omega
- " $5 n^{2}$ is $\Omega\left(n^{2}\right)$ and $\Omega(n)$ ". The opposite of Big-O. "Our lower bound shows..."
- $f>c * g$ for large enough n

$\Theta(x)$ - equal to

- Big Theta
- " $5 n^{2}$ is $\Theta\left(n^{2}\right)$ ". "Furthermore, our bounds are tight..."
- $c_{1} * g>f>c_{2} * g$ for large enough n
$o(x)$ - less than, not equal to.
- Little O
- " $5 n^{2}$ is $o\left(n^{3}\right)$ ". "We break a long standing barrier, giving the first algorithm running in time..."
- $f<c * g$ for large enough n and for all c. I.e. $\frac{f}{g} \rightarrow 0$
$\omega(x)$ - greater than, not equal to.
- Little Omega
- " n^{2} is $\omega(n)$ ". The opposite of Little-O, and as far as I can tell, not very popular.
- $f>c * g$ for large enough n and for all c. I.e. $\frac{g}{f} \rightarrow 0$

